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Abstract

In land use research regression techniques are a widely used approach to explore datasets
and to test hypotheses between land use variables and socio-economic, institutional and envi-
ronmental variables. Within land use science researchers have argued the importance of scale
and levels. Nevertheless, the incorporation of multiple scales and levels and their interactions
in one analysis is often lacking. Ignoring the hierarchical data structure originating from scale
effects and levels, may lead to erroneous conclusions due to invalid specification of the regres-
sion model. The objective of this paper is to apply a multilevel analysis to construct a predic-
tive statistical model for the occurrence of land use. Multilevel modelling is a statistically
sound methodology for the analysis of hierarchically structured data with regression models
that explicitly takes variability at different levels into account. For a land use study in the Phil-
ippines multilevel models are presented for two land use types that incorporate the field,
household and village level. The value of multilevel modelling for land use studies and the
implications of multilevel modelling for data collection will be discussed. The results show that
explanatory variables can account for group level variability, but in most cases a multilevel
approach is necessary to construct a sound regression model. Although land use studies often
show clear hierarchical structures, it is not always possible to use a multilevel approach due to
the structure of most land use datasets and due to data quality. Potentially, multilevel models
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can address many important land use issues involving scales and levels. Therefore, it is impor-
tant in land use change research to formulate hypotheses that explicitly take scale and levels
into account and then collect the appropriate data to answer these questions with approaches
such as multilevel analysis.

© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In the past decade substantial advances has been made in land use and land cover
change (LUCC) research by the development of a wide range of analytic tools to
observe, explore and model LUCC (Lambin et al., 1999; Rindfuss et al., 2004; Vel-
dkamp and Verburg, 2004). In general, LUCC is considered to be the result of the
interplay between socio-economic, institutional and environmental factors, the so-
called ‘driving forces’ of land use change. These driving forces are often subdivided
into proximate causes and underlying causes. Proximate causes are the activities and
actions that directly affect land use. Underlying causes are the fundamental processes
that underpin the proximate causes, including demographic, economic, technologi-
cal, institutional and cultural factors (Geist and Lambin, 2002). A widely used
approach to explore the relations between land use (changes) and the underlying
causes are regression techniques of various kinds (e.g., Nelson et al., 2001; Chomitz
and Thomas, 2003; Perz and Skole, 2003; Verburg et al., 2004a). The approach in
this paper makes use of a regression technique that explicitly can deal with issues
of scale and levels, which are characteristic for land use studies.

Within the LUCC discipline as a whole and in reference to regression approaches
in particular, LUCC scientists have argued the importance of scale and levels (e.g.,
McConnell and Moran, 2001; Veldkamp and Lambin, 2001; Walsh et al., 2001; Nel-
son, 2002; Rindfuss et al., 2004). Gibson et al. (2000) state that scale is the spatial,
temporal, quantitative, or analytical dimension used by scientists to measure and
study objects and processes and level refers to specific locations along a scale. For
this paper the following definitions are used: Levels refer to organisational levels
originating from social context, for example, household level, village level and
municipality level and scale is used for artificial resolution and extent originating
from a geographic representation of reality in maps. The following issues regarding
scales and levels that are important in land use (change) analysis can be identified
(Gibson et al., 2000; Verburg et al., 2004b). First, land use is the result of processes
that act at different scales and levels, which ideally would be addressed simulta-
neously. The choices that are made in a study about the extent and the unit of anal-
ysis determine to a large extent what patterns will be observed and which correlation
will be found. Often, these choices are different between disciplines (Verburg et al.,
2003). Second, scale and levels are important in identifying relations, but the fact
that a relation occurs at a certain scale or level does not explain the phenomenon.
Therefore, causal statements between variables should be made explicit and tested.
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Within these causal statements scale and level are important factors, because differ-
ent relations occur at different scales and levels. Moreover, causal relations can occur
between different scales and levels. For example, village level variables like popula-
tion or leadership capacity of the village head can influence land use at field level.
Third, aggregation of processes to a higher level does not straightforwardly lead
to a proper representation of these higher level processes because relations identified
at the micro-level (or fine resolution) does not automatically translate into the same
relation at the macro-level (or course resolution) (Robinson, 1950; Jones and Dun-
can, 1995; Easterling, 1997). The other way around the same phenomenon occurs:
Inferences made on higher levels can often not be directly translated to lower level
processes. Finally, all analyses, and therefore the insights from these analyses, are
bounded by resolution or level of analysis and extent, which are determined by data
structure and choices made by the researcher.

Mostly, scale and level issues are identified by comparing analyses at different res-
olutions and levels. Geoghegan et al. (2001) and Overmars and Verburg (2005) com-
pared an analysis of land use decisions based on a household dataset with an analysis
using a spatial dataset. Walsh et al. (2001) and Veldkamp et al. (2001) analysed the
relation between land use and its explanatory factors at different resolutions created
by aggregating grid data. However, the incorporation of multiple scales and levels in
the analysis and including interactions between levels is often lacking. So far, the sta-
tistical tools that explicitly deal with these issues are not often applied as noted by
Pan and Bilsborrow (2005) and Polsky and Easterling (2001). Multilevel modelling,
which is the approach used in this study, is one of the statistical tools that are poten-
tially capable to integrate artificial scales and organisational levels and to include
interactions between these scales and levels. Multilevel statistical modelling allows
for the analysis of data with complex patterns of variability that originate from hier-
archical structure (Snijders and Bosker, 1999).

Multilevel modelling has mainly been used in the social sciences, for example, in
sociology, education, psychology, economics, criminology (Snijders and Bosker,
1999), and is becoming more popular in geographic applications (e.g., in studying
transport and land values (Schwanen et al., 2004; Polsky and Easterling, 2001)).
In most of these applications multilevel modelling is used to study the effects of social
context on the individual behaviour and to study the confusion between aggregate
and individual effects. Land use studies can potentially benefit much from multilevel
analysis, because land use data often has a very clear hierarchical structure (e.g.,
administrative levels, agro-ecological divisions and subdivisions, societal levels, arti-
ficial scales). Therefore, it is remarkable that multilevel modelling is not (yet) widely
applied in land use studies. Some land use studies do incorporate data from multiple
levels, but only few actually use multilevel modelling (Hoshino, 2001; Pan and Bils-
borrow, 2005).

This paper aims to use multilevel analysis as the methodology to construct a pre-
dictive statistical model for the occurrence of land use that is statistically sound and
which integrates different scales and levels. On the basis of a case study from a munic-
ipality in the Philippines different multilevel models will be presented that explain the
occurrence of two major crops on individual fields in the area. In the discussion we



438 K.P. Overmars, P.H. Verburg | Agricultural Systems 89 (2006) 435-456

explore and describe the (surplus) value of multilevel modelling for land use studies
regarding the issues of scale and levels in LUCC research and describe the implica-
tions of multilevel modelling for data collection.

2. Multilevel analysis

In this section, a short introduction of multilevel models is given in respect to land
use issues in a general manner regardless of the outcome variable. Specific differences
exist between models with a continuous, binary or multinomial outcome variable
regarding estimation, model formation and the interpretation of coefficients. For
the case study the logistic approach was adopted and the model specification is given
in Section 3.3.

Multilevel analysis (e.g., Goldstein, 1995; Snijders and Bosker, 1999) is a method-
ology designed for the statistical analysis of hierarchically structured data. Multilevel
regression models explicitly take the variability at different levels into account.
Therefore, it is potentially a valuable tool in dealing with scaling issues in land use
analysis. Multilevel modelling can address the scales and levels that are important
to the land use system simultaneously, it can test hypothesis between scales and
the modeller is not forced to aggregate or disaggregate data to one unit of analysis.
Multilevel modelling can deal with nested data, such as hierarchically structured
administrative units (e.g., farms in municipalities), as well as handle cases with obser-
vations that are structured differently, like lower level observations that are member
of several groups at the higher level (e.g., farmers that have several buyers for their
products).

Fundamental to multilevel modelling is “‘that the outcome variable Y has an indi-
vidual as well as a group aspect” (Snijders and Bosker, 1999). This is reflected in the
model by including explanatory variables at the individual level and at the group
level, as well as in the way unexplained variation is modelled. Both unexplained var-
iation within groups and unexplained variation between groups is conceived as ran-
dom variation and is expressed in multilevel models as ‘random effects’. Thus,
multilevel models include an error term for every level in the model (Snijders and
Bosker, 1999). Multilevel models can be constructed by including random intercepts
only or by including both random intercepts and random slopes. Furthermore, vari-
ables can be added to the model to explain variability at the individual and group
level, and also to explain the differences in slopes. For example, in a model with a
household and a village level a random intercept can account for unobserved struc-
tural effects between villages. These structural effects may be caused by differences in
technology. Including an explanatory variable technology could explain part of the
structural effects. Random slopes actually incorporate differences between groups in
the rate of change in output per unit change in the explanatory variable (i.e., the
regression coefficients). For example, if you were predicting yields a random slope
at the village level for soil fertility would account for differences between villages
in the relation between soil fertility and yield, which may be caused by an unobserved
difference in use of chemical fertiliser.
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Multilevel models are applicable to data with hierarchical structures of various
origins. Also for data that are acquired by using a multistage sampling scheme,
and have therefore a hierarchical structure, a conventional regression model may
be incorrect and a multilevel model would be a statistically sound method. In a mul-
tistage sampling design the selection of lower level observations depends on the
choices made at higher levels. An example of a multistage sampling approach, when
conducting a regional survey among land owners, is to first sample villages and than
sample people within these villages. In this case the data at the lower level is not inde-
pendent from the higher levels and therefore a conventional statistical approach
might lead to underestimation of the standard errors (Rasbash et al., 2000). In
any case, having some kind of hierarchy in the data, a multilevel analysis will model
this hierarchy explicitly and prevent erroneous model inference.

If the multilevel structure of the data is ignored the data will inevitably be ana-
lysed at either an aggregate level or a disaggregate level. Analysing aggregated data,
like in the work of Perz and Skole (2003), can only tell us something about the rela-
tion between macro-level variables. Analysing macro-micro or micro-level proposi-
tions with aggregated data may result in gross errors (Jones and Duncan, 1995)
because by aggregating the data the variable changes in its meaning and cannot
be used anymore to draw conclusions at the lower level. This phenomenon is called
the ecological fallacy: A relation identified between macro-level does not automati-
cally translate into the same relation at the micro-level (Robinson, 1950; Jones and
Duncan, 1995; Easterling, 1997). A drawback of aggregation is that it disables the
examination of cross-level relations, for example, when a micro-level relation differs
by macro-level group or depends on a macro-level variable.

Disaggregation of macro-level data into micro-level data, by assigning the values
of a few higher level observations to all lower level units, results in an exaggeration
of the sample size. Wrongly assuming that all these observations are independent
leads to an over-confidence in the estimated level of significance (due to underestima-
tion of the standard errors), which in turn leads to elevated probabilities of a type I
error when studying between group differences (type I errors: concluding there is a
relation while in reality there is none). When studying within group differences it
can result in failing to detect a relation (Snijders and Bosker, 1999; Rasbash et al.,
2000; Polsky and Easterling, 2001).

3. Materials and methods
3.1. Study area

The study area is situated in Cagayan Valley in the north-eastern part of the
island Luzon, the Philippines (Fig. 1). The study area includes 13 villages (barang-
ays) in the municipality of San Mariano, in the province of Isabela, and comprises
approximately 230 km?. It is situated between the town of San Mariano in the west
and the forested mountains of the Sierra Madre in the east. The population is
approximately 20,000 persons (about 4000 households) of various ethnic groups,
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Study area
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Fig. 1. Location of the study area in the Philippines and the location of the households’ homes within the
area.

among whom the Ilocano, Ibanag and Ifugao, who are all migrants or descendents
of migrants that came to the area from the 1900s onwards, and the Kalinga and
Agta, who are the indigenous inhabitants. Before immigration started, the area
was completely forested with tropical lowland forest. At present, the study area
shows a clear land use gradient ranging from intensive agriculture (mainly wet rice
and yellow corn) near San Mariano via a scattered pattern of wet rice, yellow corn,
banana, grasses, and (fruit) trees in the foothills to residual and primary forest in the
eastern part. In the area a village unit actually consists of a group of settlements
(sitios). The people live in these settlements, while their fields are often located in
the surroundings of the settlement at an average distance of about 30 min walking.

3.2. Data

Data were collected between June and November 2002 by interviewing house-
holds about their land use practices and household characteristics using a structured
questionnaire. The questionnaire was designed to create an exhaustive list of vari-
ables that might explain land use decisions. This list of variables was based on liter-
ature, theories from a range of disciplines and expert knowledge of the area (see
Overmars and Verburg, 2005 for more information). For the analysis in this study
a subset of variables was used.

The selection of households to be interviewed was based on systematic random
sampling using population data available at the POPMAT (POPulation Manipula-
tion Action Team) member in the village. In all 13 villages every twentieth household
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was selected (systematic random sampling with sampling interval 20) from the POP-
MAT’s list. From a total of approximately 3150 households in the 13 villages, 151
households were interviewed. The number of interviews per village ranges from 6
in the least populated village to 20 in the most populated. For the selected house-
holds the relevant characteristics were recorded for all fields (where a field is defined
as a piece of land of a single owner used for one crop type). A household often owns
or uses a number of fields at different locations and which are cultivated with differ-
ent crops.

The most detailed (nested) hierarchy in the area, relevant to the land use system,
could be constructed as follows (from the lowest level to the higher level): fields —
plots (where a plot consists of a number of adjacent fields from the same owner) —
households — sitios (the settlements) — villages — municipality. For the analysis only
the field, household and village level were used (see Fig. 2). This is the most func-
tional grouping, because the plots consist mostly of only one field and the dataset
does not contain enough observations to discriminate between sitio and household
level. Most sitios have only one or two households within the sample, which is insuf-
ficient for a proper multilevel analysis. Each of the variables was collected at its cor-
responding level, e.g., soil characteristics and slope at field level and household
structure at the household level. Village level variables were derived from census data
of 1997 (data about ethnicity and the percentage of the population that is born in the
municipality of San Mariano).

Villages (n=13) Households (n=151) Fields (n=367)

e
\—

Fig. 2. Schematic representation of the hierarchical structure of the dataset.



Table 1

Description of the variables in the dataset used in this study

Variable name Description Min. Max. Mean SD
Dependent variables (field level: level 1, n =297)

Yellow corn 1 if yellow corn, 0 otherwise 0 1 0.532 0.500
Banana 1 if banana, 0 otherwise 0 1 0.215 0.412
Independent variables at field level (level 1, n =297)

Slope 1 1 if slope category is flat, 0 otherwise 0 1 0.380 0.486
Slope 2 1 if slope category is flat to rolling/moderate, 0 otherwise 0 1 0.229 0.421
Slope 3 1 if slope category is rolling/moderate, 0 otherwise 0 1 0.283 0.451
Slope 4 1 if slope category is rolling/'moderate to steep/hilly, 0 otherwise 0 1 0.081 0.273
Slope 5 1 if slope category is steep/hilly, 0 otherwise 0 1 0.027 0.162
Creek 1 if there is a creek or spring trough or bordering the plot, 0 otherwise 0 1 0.593 0.492
Plot distance Hours walking from the residence of the household to the plot (h) 0 10 0.511 1.043
Independent variables at household level (level 2, n=115)

Ethnicity Ilocano 1 if male household head is Ilocano (or Tagalog speaking), 0 otherwise 0 1 0.539 0.501
Ethnicity Ifugao 1 if male household head is Ifugao, 0 otherwise 0 1 0.087 0.283
Ethnicity rest 0 if ethnicity is Ilocano or Ifugao, 1 otherwise 0 1 0.374 0.486
Transportation cost Cost to transport a bag of corn from the residence to San Mariano (pesos) 7 45 22,652  12.214
Municipality of origin 0 1 if both male and female were not born in San Mariano, 0 otherwise 0 1 0.244 0.431
Municipality of origin 1 1 if male or female head is born in San Mariano, 0 otherwise 0 1 0.322 0.469
Municipality of origin 2 1 if both male and female were born in San Mariano, 1 otherwise 0 1 0.435 0.498
Independent variables at village level (level 3, n=12)

Ethnicity Ilocano (village) Fraction of the population of the village that is Ilocano (or Tagalog speaking) 0.021 0.900 0.573 0.259
Ethnicity Ifugao (village) Fraction of the population of the village that is Ifugao 0.000 0.404 0.076 0.147
Municipality of origin (village) % of the population of the village born in San Mariano 64.899  99.007  84.479 9.748
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Records with missing data were omitted from the dataset. Table 1 presents the
dataset as it was used in the analysis, which is a subset of the original dataset and
includes the most relevant variables based on preceding research and field experience
(Overmars and Verburg, 2005).

3.3. Multilevel model specification

Multilevel models can be constructed in various forms with different levels of
complexity. In this section, we start with the description of a simple model to explain
how we arrive at the model that we will use to explain the occurrence of land use.
The description of the models is based on Snijders and Bosker (1999).

Since we will estimate a binary response variable (land use choice) we start with a
conventional multiple logistic regression model:

log (ﬁ) = Bo+ Bixi + foxa + - + Bxn (1)

In this model p is the probability for the occurrence of the event, which in this study
is the occurrence of a land use type on a field, f, is an intercept, f3, are regression
coefficients to be estimated, and the x,, are exogenous explanatory variables.

The simplest imaginable way to incorporate levels would be to identify explana-
tory variables at the lower and the higher level:

log <1 p,,p ) =Bo+Bix1+ -+ By + oz + o+ Gz (2)
i

Here, f, and «,, are regression coefficients to be estimated, and the x,, are exogenous

explanatory variables at the lower level (e.g., field) and z,, are explanatory variables

at the higher level (e.g., a household).

Actually, many studies apply this approach by including variables from different
levels in the regression model (e.g., Miiller and Zeller, 2002; Overmars and Verburg,
2005) but do not report this explicitly. This model is typically called a fixed effect
model since it lacks the random effects corresponding to higher levels in a multilevel
model (Snijders and Bosker, 1999). The assumptions that belong to this model are
that the residuals are mutually independent and have a zero mean. An additional
assumption that is often made is that all groups have the same variances (homoske-
dasticity assumption). Implicitly the assumption is made that all group structure is
represented by the explanatory variables. If this is not the case the residuals will
be heteroskedastic. A second problem with this approach is that the higher level data
is often disaggregated to the lowest level. As said before, this will lead to type I
errors. The following models describe how the effects of the different levels can be
incorporated into the regression model. With these models the assumptions stated
above can be tested.

The model in Eq. (3) incorporates group effects but as yet without any explana-
tory variables. Besides the general intercept a random term Uy, is introduced, which
is a group dependent intercept, in other words, an error term at the group level. With
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this random term the variance that exists between groups is modelled explicitly. The
effect of being a ‘member’ of a specific group is taken into account. Introducing this
term will help to prevent the residuals from being heteroskedastic.

For reasons of clarity indices mark the different levels: i for level 1, j for level 2
(and k for level 3) and a zero indicates that a parameter is not variable at that level

p.
log <l—jp> = 700 + Uy (3)

J

In Eq. (3) yoo is the general intercept and Uy, is the group dependent deviation. The
deviations Uy, are assumed to be independent and normally distributed with a zero
mean and a variance of 73 (Snijders and Bosker, 1999).

This model is called the ‘pure random effects model’, ‘empty model’ or ‘uncondi-
tional model’. The empty model is a random intercept model without explanatory
variables. With this model the variance of the dependent variable can be decomposed
in a part caused by the individual level and a part caused by the group level (Snijders
and Bosker, 1999; Polsky and Easterling, 2001). We will use this model as the base
model to estimate if the group level variance in the dependent variable is significant.
In the case study this is called model 1.

Including explanatory variables leads to the following model:

log (1 fljp> = Yoo + V10X17 + -+ F VgoXgis + Y0121 + - -+ Vo2 + Uy, (4)
i
where x,; are ¢ explanatory level-1 variables and z,; are r explanatory level-2 vari-
ables. Again, the deviations Uy, are assumed to have zero mean (given the values
of the explanatory variables) and a variance of 7 (Snijders and Bosker, 1999). This
model (Eq. (4)) is a random intercept model: a model where the intercept varies ran-
domly between groups. The first part, poo + y10X1;+ ... + yg0Xgs T vorzi; + ... +
YorZrj, is called the fixed part of the model and the second part, Uy, is the random
part of the model. In the case study analysis model 2, 3, 4 and 5 are based on this
model (note that in the case study the model is extended to a model with 3 levels).

The interpretation of the regression coefficients is similar to ordinary logistic
regression and is facilitated by the odds ratio (exp(y)). The odds ratio can be inter-
preted as the change in odds for the considered event upon an increase of one unit in
the corresponding factor, while the other factors are considered to be unchanged.
This means that the odds, p/(p—1), are multiplied by exp(y) for every unit increase
of the variable corresponding to y (Neter et al., 1996).

Starting from the empty model variables can be added at all levels. Variables at
the individual level can explain part of the individual level variability as well as part
of the group level variability, in the case when the values of the level one variable are
consistently higher or lower than the general mean. For example, the slopes of the
fields can be consistently higher in some of the villages and lower in others. Incorpo-
rating this field level variable can account for village level variability detected with
the empty model.
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Variables at the higher level(s) can be grouped in higher level variables that can
only be observed at the higher level (e.g., the presence of a secondary school in a vil-
lage) and aggregates of lower level variables (e.g., the average income of the inhab-
itants, which is an aggregate of observations at a lower level). Including these
aggregates allows for the separation of the effect at the individual level and the effect
at group level, which gives insight in the way a variable influences the outcome. In a
model with only the level 1 data of that variable included the effect at both levels is
forced to be equal (Snijders and Bosker, 1999). This difference is important while
interpreting the regression coefficients. As described in Section 1 processes at the
aggregate level can be substantially different from processes at the individual level.
The village level variables in this study are of the aggregated type. Although they
were calculated from census data, they have their equivalent at the household level.

The random intercept model (Eq. (4)) can be expanded by introducing random
slopes. In a model with random slopes the regression coefficients (y,) that act on
the explanatory (level 1) variables are subdivided in a fixed and a random part.
The addition of random slopes allows specific variables to differ by group. Even
more complexity can be modelled by introducing level 2 variables in these slopes
to explain (part of) the differences in slope. This is actually the same as a cross-prod-
uct with an explanatory variable from level 1 and an explanatory variable from level
2. In multilevel modelling this cross-product is called cross-level interaction (Snijders
and Bosker, 1999). In this study, random slopes and cross-level interactions were not
included in the models. This will be explained in greater detail in the final discussion.

In the case study models with three levels were applied (Eq. (5)), which is just an
expansion of the model in Eq. (4). The first model in the analysis is a pure random
intercept model (empty model) with 3 levels. The subsequent models (models 2, 3, 4
and 5) are random effect models with three levels (Eq. (5)).

T
log (m) = Yooo + V100X 1kt F Vg00%gik T Vor0Z1k o+ VooZrk

+ Yoor @ik + -+ + Voos@sk + Rojx + Uoor- (5)

In Eq. (5) the ay are s explanatory level 3 variables, the Ry is the level 2 random
part and Uy is the level 3 random part. In this model fields are the unit of analysis
at level 1, level 2 consists of households and level 3 are the villages. The dependent
variable Y is land use. If Y =1 the land use occurs, if ¥ =0 the land use does not
occur and p is the probability that the land use is found on that field.

Two analyses will be presented: one explaining the occurrence of yellow corn and
one explaining the occurrence of banana. These are the most dominant crops in the
study area (53% of the fields were cultivated with corn and 22% with banana). In
the analysis, we present five different random intercept models per land use type.
The first model is the empty model, which informs about the variability at the differ-
ent levels. In the subsequent models variables will be added per level to see the influ-
ence of these groups of variables on the variance component of the higher levels.

The variables included were selected by studying prior analyses (Overmars and
Verburg, 2005; Overmars et al., 2006) and field experience. For the corn model vari-
ables from the following list were added in different compositions: slope, creek and
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plot distance at the field level; transportation cost, ethnicity and municipality of ori-
gin at the household level; and averages of municipality of origin and ethnicity at the
municipal level. For the banana model the same variables were used except for pres-
ence of creeks, because this was considered to be of no influence to the occurrence of
banana.

The analysis is performed with HLM software (Raudenbush et al., 2004). All
models were estimated using the PQL (Penalized Quasi likelihood) routine. In
HLMG6 all 3-level hierarchical generalised linear models are estimated by full PQL
by default (Snijders and Bosker, 1999; Raudenbush et al., 2004).

To indicate the proportion of variance that is accounted for by the group level the
intraclass correlation coefficients (pg and pg, for the household and village level,
respectively) are calculated. Eq. (6) shows the calculation of the intraclass correlation
coefficient for the household level. (Snijders and Bosker, 1999; Browne et al., 2005).

pr = var(Rou )/ (var(Roz) + var(Ugy) + 7°/3), (6)

where ppg is the intraclass coefficient for the household level, var(Ry) is the variance
of the random intercept at household level and var( Uy, ) is the variance of the ran-
dom intercept at village level. A logistic distribution for the level one residual implies
a variance of nn/3, which appears as the level 1 variance in Eq. (6) (Snijders and Bos-
ker, 1999). In an linear multilevel model this would be the level 1 variance o°.

To assess the goodness-of-fit of the models the relative operating characteristic
(ROC) (Swets, 1988) was used . This measure is capable to assess the quality of
the predictor and can be compared between different models. The ROC summarises
the performance of a logistic regression model over a range of cutoff values classify-
ing the probabilities. The value of the ROC is defined as the area under the curve
linking the relation between the proportion of true positives versus the proportion
of false positives for an infinite number of cutoff values. The ROC statistic varies
between 0.5 (completely random) and 1 (perfect discrimination).

4. Results
4.1. Corn models

This section presents various multilevel models, with different sets of explanatory
variables, predicting the occurrence of yellow corn on a field. Model 1 is the empty
model, which does not include any explanatory variables, but only includes random
effects at the higher levels. Model 1 (Table 2) shows that the variance is significant
(p <0.05) at both level 2 and 3. The intraclass correlation coefficients (pz and py,
Table 2) indicate that 10% of the variance can be attributed to the household level
and 4% to the village level. The remaining variance is in level 1, which is fixed in this
modelling approach to /3. Thus, both the households and the villages show signif-
icant clustering of the occurrence of corn. The variance detected in this model might
be accounted for by explanatory variables. This is studied with the models 2, 3, 4
and 5.
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Table 2

Multi-level models for yellow corn

Yellow corn Model 1 Model 2 Model 3 Model 4 Model 5

Fixed effects

Level 1
Intercept 0.201 —0.546 —0.217 0.330 —1.083
Slope 1 3.108™ 3.688" 3.5727 3.113™
Slope 2 3.446"™ 4.091"" 4.007"" 3.397""
Slope 3 2.274 2.768" 2.657 2.281
Slope 4 —0.469 —0.560 —0.629 —0.603
Creek —0.833" —0.759" —0.742" —0.843"
Plot distance —0.586" —0.599" —0.616" —0.569"

Level 2
Transportation cost —0.050"" —0.050"" —0.055™ —0.038"
Ethnicity Ilocano —0.929" —0.973"
Ethnicity Ifugao —0.997 —1.094
Municipality of origin 0 -1.313™ —1.347"
Municipality of origin 1 0.233 0.239

Level 3
Municipality of origin village —0.744 0.845
Ethnicity Ilocano village 0.314 —0.384
Ethnicity Ifugao village 0.283 —0.781

Random effects

Level 2
var (Roj) 0.395" 0.441"" 0.001"" 0.004"" 0.494""
PR 0.103 0.115 0.000 0.001 0.130
Level 3
var (Ugpox) 0.143" 0.103 0.187" 0.177" 0.018
U 0.037 0.027 0.054 0.051 0.005
ROC 0.855 0.881 0.864 0.863 0.882
* p<0.05.
** p<0.01.
* p <0.001.

Model 2 introduces a set of geographic and biophysical variables that are known
explanatory variables for the occurrence of corn in the study area. These are slope,
presence of a creek, hours walking from the residence of the household to the plot,
and the cost to transport a bag of corn from the residence to San Mariano.

Table 2 (model 2) shows that almost all explanatory variables (the fixed effects)
have significant coefficients. Corn is more likely to occur on field that are flatter,
not close to a creek, close to the household’s residence and close to the market town
of San Mariano. The random part of level 3 turns out to be lower. So, these variables
explain some of the variance at the village level detected in the empty model. This
might be caused, for example, by the fact the transportation costs vary on average
per village because the villages are situated at different distance from the market
place. By introducing this variable (or perhaps one of the other variables) the
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variability disappeared from the village level. Although the level 3 random part is not
significant and, theoretically, level 3 could be excluded, the structure with three levels
is maintained in order to study the level 3 behaviour in the following models. At the
household level the variance component is still significant and similar to the variance
component of the empty model. Thus, the variables included do not account for any
of the household level variability.

Model 3 adds household variables to model 2. Additional to the relations in
model 2 corn turned out the be negatively related with households where both the
male and female are born outside the municipality and negatively with people of Ilo-
cano origin. After including the household level variables the random part of level 2
(the household level) decreased substantially. Apparently, the variance at level 2 is
captured by the included variables. The geographical/biophysical variables are still
significant. The level 3 variance increased in comparison with model 2.

Model 4 adds the village level variables to the model 3 configuration. This model
investigates if there is a fixed effect of the village level variables besides the variables
included in model 3. For example, one can imagine that a village dominated by one
ethnic group has an extra village level effect besides the effect of ethnicity at house-
hold level for the whole study area. The village level variables are aggregated values
of variables at level 2 (ethnicity and municipality of origin). Instead of using the sur-
vey data to derive these level 3 variables census data of the complete population was
used. Table 2 shows that there are no significant effects for the variables at village
level. Including these variables results in a similar random part at the village level
as model 3. Thus the level 3 variables did not explain any of the variance in level 3.

Model 5 was constructed to see if including the household variables at village level
instead of at the household level would be a good alternative. This would be conve-
nient because census data at village level is often more easily available then house-
hold level data. However, like in model 4, none of the village level variables are
significant in model 5. Besides that, the variance component at household level is
the same at in the models 1 and 2. This shows that the aggregated variables do
not capture any of the variability at the household level. As theory suggests (Robin-
son, 1950; Jones and Duncan, 1995) the effect of the aggregate variable is quite dif-
ferent than that of its lower level equivalent.

The ROC value of the corn model 1 is 0.855. The ROC value of model 2 is quite
the same as model 1. This indicates that including the variables at field level does not
lead to better predictions, because then the ROC would be higher if they did explain
field level variance. However, the variables included in model 2 do explain part of the
village level variance, which is showed by a lower variance component at the village
level and significant regression coefficients.

4.2. Banana models

The analysis of the occurrence of banana shows a different result (Table 3). In the
empty model (model 1) there are no signs of significant between-group variances.
Model 2, which incorporates the geographical/biophysical variables, shows a signif-
icant relation between slope of a field and the choice to cultivate banana and a sig-
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Table 3
Multi-level models for banana
Banana Model 1 Model 2 Model 3 Model 4 Model 5
Fixed effects
Level 1
Intercept —1.289™" —3.430""" —3.260"" —4.050 —4.120
Slope 3 2.389™"" 2435 24327 2397
Slope 4 5.022"" 5.006™" 4975 4970
Slope 5 5.634""" 59717 5765 5.461°""
Plot distance 0.0064 0.0076 0.0231 0.0207
Level 2
Transportation cost 0.015 0.012 0.017 0.019
Ethnicity Ilocano —0.297 —0.236
Ethnicity Ifugao —0.613 —0.500
Municipality of origin 0 0.532 0.528
Municipality of origin 1 —0.242 —0.247
Level 3
Municipality of origin village 1.253 1.198
Ethnicity Ilocano village —0.380 —0.414
Ethnicity Ifugao village —0.055 0.114

Random effects

Level 2
var (Rojx) 0.003 0.006 0.003 0.004 0.006
PR 0.001 0.002 0.001 0.001 0.002
Level 3
var (Ugox) 0.107 0.546"™" 0.724™" 0.637"" 0.487"
U 0.031 0.142 0.180 0.162 0.129
ROC 0.694 0.906 0.909 0.908 0.903
) p <0.05.
- »<0.01.
™ p <0.001.

nificant random effect at the village level. Thus, including variables results in a large
and significant random part at the village level. This could not be explained com-
pletely. Part of the explanation is that in general changes in the fixed effects part
can cause big changes in the random part while changes in the random part usually
do not cause big changes in the fixed effect part. The mean structure the model can
change the stationarity of the mean causing a shift in variance and making the ran-
dom effects part significant.

Model 3 introduces household level variables ethnicity and municipality of origin,
model 4 includes also village averages of these variables and model 5 includes only
the village level and field level variables. All the coefficients of these variables do
not differ significantly from zero, neither do they influence the levels 2 and 3 random
parts significantly. Therefore, we conclude that these variables do not influence
banana cultivation significantly and that this is predominantly determined by slope.
To find out what process might cause the differences between villages the random



450 K.P. Overmars, P.H. Verburg | Agricultural Systems 89 (2006) 435-456

intercepts of the village level were examined. This did not show a clear pattern. Fur-
thermore, models with additional explanatory variables and models with random
slopes were tested , but this did not result in a satisfying explanation of the variability
at the village level in model 2.

The ROC of banana model 1 is 0.694. Model 2 has an ROC of 0.906. This indi-
cates that the slope of the fields does explain part of the variance at the field level.
Including variables in model 3, 4 and 5 does not produce a higher ROC than model
2, which is obvious, because in the model 2 the random part is included in the pre-
dicted values and no additional level 1 variables are included. The two random parts
accounts for all variance at level 2 and 3. The difference between model 2 and models
3 .4 and 5 is that the variables at household and village level can explain part of the
variance. However, in this model the explanatory factors at household and village
level are not significant and the variance of the random part is similar throughout
models 2, 3, 4 and 5.

5. Discussion and conclusions
5.1. Multilevel statistics for land use studies

In this section, the main findings of the multilevel analysis are discussed for the
case study. Then, these findings are used to evaluate the advantages and disadvan-
tages of multilevel analysis for land use studies in general.

For corn cultivation the empty model indicated significant between-group vari-
ability at two higher levels (household and village). Explanatory variables at the
household level turned out to account for that variability at that level (Table 2,
model 3). Replacing some of the household level variables with their village level
aggregates did show a significant variance component at the household level. From
this it can be concluded that the household level variables cannot be substituted by
village level aggregates in this case. The explanatory variables at the household level
can explain a significant part of the occurrence of corn at field level. The exploratory
procedure applied has revealed at which levels important variables explain land use
decisions. Models 3 and 4 show that within these models a significant part of vari-
ability is left at the village level, which is left unexplained in these models.

The empty model with banana as dependent variable did not show any significant
variance component. However, after introducing the variables slope and transporta-
tion costs as explanatory variables (Table 3, model 2) the village level variance com-
ponent is significant (p < 0.01). The variability at village level could not be accounted
for by any of the explanatory variables used in this study. The question what causes
the village differences in this model will therefore remain unanswered. The village
level variability might be caused by differences in soils or geomorphology, though
these variables were not included in this study. The results for both the corn and
banana models indicate that a conventional regression model would not be correct
because the residuals would be heteroskedastic. The multilevel structure accounts
for the unobserved effects between villages and provides a statistically correct model.
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The multilevel analysis of the land use system in the study area provided addi-
tional information to previous analyses based on conventional regression models
(Overmars and Verburg, 2005). In the case of corn the analysis confirmed the
hypothesis that the household level plays an important role. In this analysis the
municipality of origin of the household (which is proxy for migration history) in
combination with the ethnicity variables turned out to be a significant explanatory
variables that account for the variability at the household level. For the case of
banana the analysis confirmed the idea that household level characteristics did not
play an important role in the decision to cultivate bananas. Bananas occur mostly
on sites that are less productive or too steep for arable crops like corn, rice or veg-
etables. Significant village level variance indicates the importance of village level con-
ditions in explaining the decision to cultivate banana.

Like in any other statistical analysis, drawing conclusions about the causality of the
relations from the regression analysis should be done with care. For example, the posi-
tive relation between slope of a field and bananas results from the fact that the flatter
areas are devoted to arable crops, not because bananas perform better on the steep
slopes. Like any other regression analysis multilevel models can only reveal associa-
tions between variables and partition variance. Additional research is needed to study
the causality of the relations. An example of such a method for the case study area is
described in Overmars et al. (2006).

In this paper, random slopes were not incorporated in any of the models.
Although there were no strong arguments suggesting that the coefficients for the
explanatory variables were different, some experiments were carried out to study
the behaviour of models that include random slopes. This resulted in either insignif-
icant random slopes or models that did not converge. Most likely the data structure
and the amount of observations made the estimation of the random slopes compli-
cated. The number of observations (fields) per households is low and this compli-
cates the determination of the random slopes.

The results indicate that the household level can be crucial in explaining land use
at the field level. However, in many studies household level data is not available
because in many regional studies the analysis is based on remote sensing, maps
and census data (e.g., Nelson et al., 2001; Walsh et al., 2001; Miiller and Zeller,
2002). As shows from this study simply substituting household level variables with
their village level equivalents, which can be calculated from widely available census
data, will most often not account for the household level variability because of errors
due to aggregation. Disaggregating higher level variables to the level of analysis can
lead to erroneous conclusions. In any case, disregarding the household level variables
while explaining land use at field conclusion of Rindfuss et al. (2003) that the house-
hold level is the central level to be included in explanations of land use.

Data availability and data structure play an important role in land use studies. As
illustrated in this paper, data availability determines at what level land use can be
studied, and therefore at what level one can draw conclusions. If the hierarchical
structure of the data is important to the land use system under study and the research
questions that arise from this, this structure should be considered in the sample
design to take full advantage of the multilevel modelling technique. Ideally, at every
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level a sample is drawn that is representative for the population at that level. For the
highest level, one should keep in mind that a small sample size cause the same diffi-
culties as an ordinary regression with that sample size (Snijders and Bosker, 1999),
i.e., small sample sizes have less power than larger samples. For the lowest level,
which is the unit of analysis, the number of observations per group (e.g., the number
of fields per household) should be enough to estimate the parameters which are
included in the model.

Datasets that were not designed for multilevel modelling often appear to be inad-
equate. This is a serious constraint for applying multilevel modelling in land use
studies, because many studies use available datasets. In studies with levels other than
farmers and fields, for example including country and sub-country level, the data
structure can be more favourable to multilevel modelling.

In the dataset used in this study the number of observations (fields) per household
was very low, but this is inherent to the structure of the land use system, because the
farmers have only a few fields. At the village level only 12 observations were present,
but this is the complete population in the study area. This data structure provides
relatively few degrees of freedom for multilevel modelling and may have hampered
the estimation of random slopes, which were therefore not included in the models
presented. Polsky and Easterling (2001) have a similar experience in estimating a
multilevel model based on 446 counties nested within 57 districts. To deal with small
sample sizes one might consider to use bootstrap or MCMC (Markov Chain Monte
Carlo) approaches, which are available in MLwiN (Rasbash et al., 2000), for
example.

Verburg et al. (2004b) emphasise the importance of multi-scale approaches and
cross-scale dynamics and name multilevel modelling as a potential approach that
can deal with scale issues in land use studies. Multilevel modelling can address a vari-
ety of these issues. First of all, the multilevel approach explicitly includes different
levels. These levels can be, for example, organisational levels of the land use system
or nested administrative units, but can also be artificial aggregations of a grid. Where
in other studies the effects of scale on the observed relations between land use and
driving factors were studied by the separate analysis at different organisational levels
or aggregated grids (e.g., Verburg and Chen, 2000; Walsh et al., 2001; Overmars and
Verburg, 2005), the multilevel approach is capable of incorporating different levels of
aggregation within one model and exploring the contributions of the various levels.

Secondly, within the multilevel approach cross-scale dynamics can be modelled as
cross-level interactions. A cross-level interaction can be defined as dependence of a
relation between two micro variables on a macro-level variable (Snijders and Bosker,
1999). A difference with conventional models is that when including the cross-level
interaction the slopes parameters also have a random effect. An additional option
in a multilevel approach is to include group level aggregates of variables. This clearly
separates level 1 effects from higher level effects, which can be completely different.

Another important aspect to consider in land use studies is spatial dependency,
which refers to the geographic law that nearby things are more related then distant
things (Tobler, 1970). Spatial dependency in land use patterns can be caused by
dependence of the land use pattern on an explanatory factor that is spatially struc-
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tured (trend) or a spatial interaction process of the land use variable itself, like com-
petition or imitation (Anselin, 1988; Irwin and Geoghegan, 2001; Overmars et al.,
2003; Polsky, 2004). Both Polsky and Easterling (2001) and Pan and Bilsborrow
(2005) mention that multilevel modelling can partly reduce the effect of spatial auto-
correlation when neighbouring observations are nested within one group. If the spa-
tial dependency is only related to the nested hierarchy this might even correct for all
spatial autocorrelation. However, often spatial dependency is structured differently
than the nested hierarchy of the dataset. In this case the neighbourhood effects
can be incorporated in the multilevel model as cross-random effects (where lower
level observation can be member of different groups at the higher level). For exam-
ple, each observation can be part of a group with all its neighbours. This approach
would correct for spatial autocorrelation but is not yet studied in land use research.
In this study this approach was not applied because the observed field are relatively
far apart due to the relatively small sample size and spatial autocorrelation is there-
fore assumed to be minimal.

5.2. Conclusions

The case study has shown that multilevel analysis can be applied to statistically
model the occurrence of land use. We consider multilevel modelling to be a relevant
tool for land use studies because organisational levels and spatial and temporal scale
dependencies are characteristic for land use data. Multilevel modelling offers a
method to study the influence of these levels and scales as well as great flexibility
in testing hypothesis on explanatory variables and their cross-level interactions
and spatial dependencies. Multilevel regression modelling is considered to be the sta-
tistically sound method to create regression models when having hierarchically struc-
tured data. Including random parts in the model ensures correct estimates of the
regression parameters and their significance levels. However, so far, few scholars
did apply this approach in land use studies. This might have to do with data quality
and data availability. Another cause can be that the methodology is only recently
developed. Currently, multilevel software becomes more generally available (see
Centre for multilevel modelling (2005) for a detailed review) which might promote
the use of multilevel models in land use change studies.

In recent LUCC literature many have advocated for explicit attention for scale
issues in LUCC research (e.g., McConnell and Moran, 2001; Veldkamp and Lambin,
2001; Rindfuss et al., 2004). From this study it can be concluded that it is indeed
important to explicitly identify and report on the levels that are present in the study.
Levels that are crucial in explaining the land use system should be included in mod-
elling exercises. Moreover, the propositions that are studied should indicate more
explicitly to which scales and levels they apply. Potentially, a multitude of proposi-
tions can be formulated that involve scale and level, like micro-micro, macro-macro,
micro-macro, macro-micro and multi-level propositions. To be able to test these
hypotheses it is important to adequately collect the data to enable the application
of a multilevel approach in order to answer questions that are inherently hierarchical
in reference to land use studies. Multilevel modelling is a useful addition to the land
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use research toolbox that allows the exploration of a number of cross-scale
propositions.
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